Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2403371, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702927

RESUMO

Calcium-ion batteries (CIBs) have emerged as a promising alternative for electrochemical energy storage. The lack of high-performance cathode materials severely limits the development of CIBs. Vanadium oxides are particularly attractive as cathode materials for CIBs, and preinsertion chemistry is often used to improve their calcium storage performance. However, the room temperature cycling lifespan of vanadium oxides in organic electrolytes still falls short of 1000 cycles. Here, based on preinsertion chemistry, the cycling life of vanadium oxides is further improved by integrated electrode and electrolyte engineering. Utilizing a tailored Ca electrolyte, the constructed freestanding (NH4)2V6O16·1.35H2O@graphene oxide@carbon nanotube (NHVO-H@GO@CNT) composite cathode achieves a 305 mAh g-1 high capacity and 10 000 cycles record-long life. Additionally, for the first time, a Ca-ion hybrid capacitor full cell is assembled and delivers a capacity of 62.8 mAh g-1. The calcium storage mechanism of NHVO-H@GO@CNT based on a two-phase reaction and the exchange of NH4 + and Ca2+ during cycling are revealed. The lattice self-regulation of V─O layers is observed and the layered vanadium oxides with Ca2+ pillars formed by ion exchange exhibit higher capacity. This work provides novel strategies to enhance the calcium storage performance of vanadium oxides via integrated structural design of electrodes and electrolyte modification.

2.
J Am Chem Soc ; 145(32): 17643-17655, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37540107

RESUMO

Developing low platinum-group-metal (PGM) catalysts for the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs) for heavy-duty vehicles (HDVs) remains a great challenge due to the highly demanded power density and long-term durability. This work explores the possible synergistic effect between single Mn site-rich carbon (MnSA-NC) and Pt nanoparticles, aiming to improve intrinsic activity and stability of PGM catalysts. Density functional theory (DFT) calculations predicted a strong coupling effect between Pt and MnN4 sites in the carbon support, strengthening their interactions to immobilize Pt nanoparticles during the ORR. The adjacent MnN4 sites weaken oxygen adsorption at Pt to enhance intrinsic activity. Well-dispersed Pt (2.1 nm) and ordered L12-Pt3Co nanoparticles (3.3 nm) were retained on the MnSA-NC support after indispensable high-temperature annealing up to 800 °C, suggesting enhanced thermal stability. Both PGM catalysts were thoroughly studied in membrane electrode assemblies (MEAs), showing compelling performance and durability. The Pt@MnSA-NC catalyst achieved a mass activity (MA) of 0.63 A mgPt-1 at 0.9 ViR-free and maintained 78% of its initial performance after a 30,000-cycle accelerated stress test (AST). The L12-Pt3Co@MnSA-NC catalyst accomplished a much higher MA of 0.91 A mgPt-1 and a current density of 1.63 A cm-2 at 0.7 V under traditional light-duty vehicle (LDV) H2-air conditions (150 kPaabs and 0.10 mgPt cm-2). Furthermore, the same catalyst in an HDV MEA (250 kPaabs and 0.20 mgPt cm-2) delivered 1.75 A cm-2 at 0.7 V, only losing 18% performance after 90,000 cycles of the AST, demonstrating great potential to meet the DOE targets.

3.
Nat Commun ; 14(1): 3075, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244900

RESUMO

Copper-based catalyst is uniquely positioned to catalyze the hydrocarbon formations through electrochemical CO2 reduction. The catalyst design freedom is limited for alloying copper with H-affinitive elements represented by platinum group metals because the latter would easily drive the hydrogen evolution reaction to override CO2 reduction. We report an adept design of anchoring atomically dispersed platinum group metal species on both polycrystalline and shape-controlled Cu catalysts, which now promote targeted CO2 reduction reaction while frustrating the undesired hydrogen evolution reaction. Notably, alloys with similar metal formulations but comprising small platinum or palladium clusters would fail this objective. With an appreciable amount of CO-Pd1 moieties on copper surfaces, facile CO* hydrogenation to CHO* or CO-CHO* coupling is now viable as one of the main pathways on Cu(111) or Cu(100) to selectively produce CH4 or C2H4 through Pd-Cu dual-site pathways. The work broadens copper alloying choices for CO2 reduction in aqueous phases.

4.
Phys Chem Chem Phys ; 25(10): 7144-7153, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36786715

RESUMO

Pt3Zn1 and Pt1Zn1 intermetallic nanoparticles supported on SiO2 were synthesized by combining atomic layer deposition (ALD) of ZnO, incipient wetness impregnation (IWI) of Pt, and appropriate hydrogen reduction. The formation of Pt1Zn1 and Pt3Zn1 intermetallic nanoparticles was observed by both X-ray diffraction (XRD) and synchrotron X-ray absorption spectroscopy (XAS). STEM images showed that the 2-3 nm Pt-based intermetallic nanoparticles were uniformly dispersed on a SiO2 support. The relationships between Pt-Zn intermetallic phases and synthesis conditions were established. In situ XAS measurements at Pt L3 and Zn K edges during hydrogen reduction provided a detailed image of surface species evolution. Owing to a combined electronic and geometric effect, Pt1Zn1 exhibited much higher reactivity and stability than Pt3Zn1 and Pt in both the direct dehydrogenation and oxidative dehydrogenation of ethane to ethylene reactions.

5.
Sci Rep ; 12(1): 21441, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509807

RESUMO

We present a study on characteristics of operating region-dependent weight updates in a synaptic thin-film transistor (Syn-TFT) with an amorphous In-Ga-Zn-O (IGZO) channel layer. For a synaptic behavior (e.g. a memory phenomenon) of the IGZO TFT, a defective oxide (e.g. SiO2) is intentionally used for a charge trapping due to programming pulses to the gate terminal. Based on this synaptic behavior, a conductance of the Syn-TFT is modulated depending on the programming pulses, thus weight updates. This weight update characteristics of the Syn-TFT is analyzed in terms of a dynamic ratio (drw) for two operating regions (i.e. the above-threshold and sub-threshold regimes). Here, the operating region is chosen depending on the level of the gate read-voltage relative to the threshold voltage of the Syn-TFT. To verify these, the static and pulsed characteristics of the fabricated Syn-TFT are monitored experimentally. As experimental results, it is found that the drw of the sub-threshold regime is larger compared to the above-threshold regime. In addition, the weight linearity in the sub-threshold regime is observed to be better compared to the above-threshold regime. Since it is expected that either the drw or weight linearity can affect performances (e.g. a classification accuracy) of an analog accelerator (AA) constructed with the Syn-TFTs, the AA simulation is performed to check this with a crossbar simulator.


Assuntos
Óxidos , Dióxido de Silício , Simulação por Computador , Testes de Função Tireóidea , Trifluridina , Zinco
6.
Adv Mater ; 34(47): e2203920, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36030363

RESUMO

Expanding interspace and introducing vacancies are desired to promote the mobility of Zn ions and unlock the inactive sites of layered cathodes. However, this two-point modulation has not yet been achieved simultaneously in vanadium phosphate. Here, a strategy is proposed for fabricating an alcohol-based organic-inorganic hybrid material, VO1- x PO4 ·0.56C6 H14 O4 , to realize the conjoint modulation of the d-interspace and oxygen vacancies. Peculiar triglycol molecules with an inclined orientation in the interlayer also boost the improvement in the conversion rate of V5+ to V4+ and the intensity of the PO bond. Their synergism can ensure steerable adjustment for intercalation kinetics and electron transport, as well as realize high chemical reactivity and redox-center optimization, leading to at least 200% increase in capacity. Using a water-organic electrolyte, the designed Zn-ion batteries with an ultrahigh-rate profile deliver a long-term durability (fivefold greater than pristine material) and an excellent energy density of ≈142 Wh kg-1 (including masses of cathode and anode), thereby substantially outstripping most of the recently reported state-of-the-art zinc-ion batteries. This work proves the feasibility to realize the two-point modulation by using organic intercalants for exploiting high-performance new 2D materials.

7.
Sci Rep ; 12(1): 8169, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581255

RESUMO

We propose a novel scheme of examining the host-guest-solvent interactions in solution from their gas phase structures. By adopting the permethylated ß-cyclodextrin (perm ß-CD)-protonated L-Lysine non-covalent complex as a prototypical system, we present the infrared multiple photon dissociation (IRMPD) spectrum of the gas phase complex produced by electrospray ionization technique. In order to elucidate the structure of perm ß-CD)/LysH+ complex in the gas phase, we carry out quantum chemical calculations to assign the two strong peaks at 3,340 and 3,560 cm-1 in the IRMPD spectrum, finding that the carboxyl forms loose hydrogen bonding with the perm ß-CD, whereas the ammonium group of L-Lysine is away from the perm ß-CD unit. By simulating the structures of perm ß-CD/H+/L-Lysine complex in solution using the supramolecule/continuum model, we find that the extremely unstable gas phase structure corresponds to the most stable conformer in solution.

8.
Nat Mater ; 21(7): 795-803, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35501365

RESUMO

Intercalation-type metal oxides are promising negative electrode materials for safe rechargeable lithium-ion batteries due to the reduced risk of Li plating at low voltages. Nevertheless, their lower energy and power density along with cycling instability remain bottlenecks for their implementation, especially for fast-charging applications. Here, we report a nanostructured rock-salt Nb2O5 electrode formed through an amorphous-to-crystalline transformation during repeated electrochemical cycling with Li+. This electrode can reversibly cycle three lithiums per Nb2O5, corresponding to a capacity of 269 mAh g-1 at 20 mA g-1, and retains a capacity of 191 mAh g-1 at a high rate of 1 A g-1. It exhibits superb cycling stability with a capacity of 225 mAh g-1 at 200 mA g-1 for 400 cycles, and a Coulombic efficiency of 99.93%. We attribute the enhanced performance to the cubic rock-salt framework, which promotes low-energy migration paths. Our work suggests that inducing crystallization of amorphous nanomaterials through electrochemical cycling is a promising avenue for creating unconventional high-performance metal oxide electrode materials.

9.
ACS Appl Mater Interfaces ; 14(16): 18439-18452, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35412785

RESUMO

This study evaluated zeolite-based sorbents for iodine gas [I2(g)] capture. Based on the framework structures and porosities, five zeolites, including two faujasite (FAU), one ZSM-5 (MFI), one mesoMFI, one ZSM-22 (TON), as well as two mesoporous materials, were evaluated for I2(g) capture at room temperature and 150 °C in an iodine-saturated environment. From these preliminary studies, the three best-performing zeolites were ion-exchanged with Ag+ and evaluated for I2(g) capture under similar conditions. Energy-dispersive X-ray spectroscopy data suggest that Ag-FAU frameworks were the materials with the highest capacity for I2(g) in this study, showing ∼3× higher adsorption compared to Ag-mordenite (Ag-MOR) at room temperature, but X-ray diffraction measurements show that the faujasite structure collapsed during the adsorption studies because of dealumination. The Ag-MFI zeolites are decent sorbents in real-life applications, showing both good sorption capacities and higher stability. In-depth analyses and characterizations, including synchrotron X-ray absorption spectroscopy, revealed the influence of structural and chemical properties of zeolites on the performance for iodine adsorption from the gas phase.

10.
Phys Rev Lett ; 128(10): 106402, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35333078

RESUMO

When Fermi surfaces (FSs) are subject to long-range interactions that are marginal in the renormalization-group sense, Landau Fermi liquids are destroyed, but only barely. With the interaction further screened by particle-hole excitations through one-loop quantum corrections, it has been believed that these marginal Fermi liquids (MFLs) are described by weakly coupled field theories at low energies. In this Letter, we point out a possibility in which higher-loop processes qualitatively change the picture through UV-IR mixing, in which the size of the FS enters as a relevant scale. The UV-IR mixing effect enhances the coupling at low energies, such that the basin of attraction for the weakly coupled fixed point of a (2+1)-dimensional MFL shrinks to a measure-zero set in the low-energy limit. This UV-IR mixing is caused by gapless virtual Cooper pairs that spread over the entire FS through marginal long-range interactions. Our finding signals a possible breakdown of the patch description for the MFL and questions the validity of using the MFL as the base theory in a controlled scheme for non-Fermi liquids that arise from relevant long-range interactions.

11.
Membranes (Basel) ; 11(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34940455

RESUMO

In this paper, we present an empirical modeling procedure to capture gate bias dependency of amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) while considering contact resistance and disorder effects at room temperature. From the measured transfer characteristics of a pair of TFTs where the channel layer is an amorphous In-Ga-Zn-O (IGZO) AOS, the gate voltage-dependent contact resistance is retrieved with a respective expression derived from the current-voltage relation, which follows a power law as a function of a gate voltage. This additionally allows the accurate extraction of intrinsic channel conductance, in which a disorder effect in the IGZO channel layer is embedded. From the intrinsic channel conductance, the characteristic energy of the band tail states, which represents the degree of channel disorder, can be deduced using the proposed modeling. Finally, the obtained results are also useful for development of an accurate compact TFT model, for which a gate bias-dependent contact resistance and disorder effects are essential.

12.
Nat Commun ; 12(1): 5370, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508097

RESUMO

High-energy density lithium-rich layered oxides are among the most promising candidates for next-generation energy storage. Unfortunately, these materials suffer from severe electrochemical degradation that includes capacity loss and voltage decay during long-term cycling. Present research efforts are primarily focused on understanding voltage decay phenomena while origins for capacity degradation have been largely ignored. Here, we thoroughly investigate causes for electrochemical performance decline with an emphasis on capacity loss in the lithium-rich layered oxides, as well as reaction pathways and kinetics. Advanced synchrotron-based X-ray two-dimensional and three-dimensional imaging techniques are combined with spectroscopic and scattering techniques to spatially visualize the reactivity at multiple length-scales on lithium- and manganese-rich layered oxides. These methods provide direct evidence for inhomogeneous manganese reactivity and ionic nickel rearrangement. Coupling deactivated manganese with nickel migration provides sluggish reaction kinetics and induces serious structural instability in the material. Our findings provide new insights and further understanding of electrochemical degradation, which serve to facilitate cathode material design improvements.

13.
J Am Chem Soc ; 143(27): 10441-10453, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34213315

RESUMO

We report the synthesis of new carbon-nanomaterial-based metal chelates that enable effective electronic coupling to electrocatalytic transition metals. In particular, multiwalled carbon nanotubes (MWCNTs) and few-layered graphene (FLG) were covalently functionalized by a microwave-assisted cycloaddition with nitrile oxides to form metal-binding isoxazoline functional groups with high densities. The covalent attachment was evidenced by Raman spectroscopy, and the chemical identity of the surface functional groups was confirmed by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The functional carbon nanomaterials effectively chelate precious metals Ir(III), Pt(II), and Ru(III), as well as earth-abundant metals such as Ni(II), to afford materials with metal contents as high as 3.0 atom %. The molecularly dispersed nature of the catalysts was confirmed by X-ray absorption spectroscopy (XAS) and energy-dispersive X-ray spectroscopy (STEM-EDS) elemental mapping. The interplay between the chelate structure on the graphene surface and its metal binding ability has also been investigated by a combination of experimental and computational studies. The defined ligands on the graphene surfaces enable the formation of structurally precise heterogeneous molecular catalysts. The direct attachment of the isoxazoline functional group on the graphene surfaces provides strong electronic coupling between the chelated metal species and the conductive carbon nanomaterial support. We demonstrate that the metal-chelated carbon nanomaterials are effective heterogeneous catalysts in the oxygen evolution reaction with low overpotentials and tunable catalytic activity.

14.
Molecules ; 26(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063489

RESUMO

We present the intra- and inter-molecular organocatalysis of SN2 fluorination using CsF by crown ether to estimate the efficacy of the promoter and to elucidate the reaction mechanism. The yields of intramolecular SN2 fluorination of the veratrole substrates are measured to be very small (<1% in 12 h) in the absence of crown ether promoters, whereas the SN2 fluorination of the substrate possessing a crown ether unit proceeds to near completion (~99%) in 12 h. We also studied the efficacy of intermolecular rate acceleration by an independent promoter 18-crown-6 for comparison. We find that the fluorinating yield of a veratrole substrate (leaving group = -OMs) in the presence of 18-crown-6 follows the almost identical kinetic course as that of intramolecular SN2 fluorination, indicating the mechanistic similarity of intra- and inter-molecular organocatalysis of the crown ether for SN2 fluorination. The calculated relative Gibbs free energies of activation for these reactions, in which the crown ether units act as Lewis base promoters for SN2 fluorination, are in excellent agreement with the experimentally measured yields of fluorination. The role of the metal salt CsF is briefly discussed in terms of whether it reacts as a contact ion pair or as a "free" nucleophile F-.

15.
Environ Pollut ; 272: 116390, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33450641

RESUMO

Engine oil-derived ash particles emitted from internal combustion (IC) engines are unwanted by-products, after oil is involved in in-cylinder combustion process. Since they typically come out together with particulate emissions, no detail has been reported about their early-stage particles other than agglomerated particles loaded on aftertreatment catalysts and filters. To better understand ash formation process during the combustion process, differently formulated engine oils were dosed into a fuel system of a gasoline direct injection (GDI) engine that produces low soot mass emissions at normal operating conditions to increase the chances to find stand-alone ash particles separated from soot aggregates in the sub-20-nm size range. In addition to them, ash/soot aggregates in the larger size range were examined using scanning transmission electron microscopy (STEM)-X-ray electron dispersive spectroscopy (XEDS) to present elemental information at different sizes of particles from various oil formulations. The STEM-XEDS results showed that regardless of formulated oil type and particle size, Ca, P and C were always contained, while Zn was occasionally found on relatively large particles, suggesting that these elements get together from an early stage of particle formation. The S, Ca and P K-edge X-ray absorption near edge structure (XANES) analyses were performed for bulk soot containing raw ash. The linear combination approach & cross-checking among XANES results proposed that Ca5(OH)(PO4)2, Ca3(PO4)2 and Zn3(PO4)2 are potentially major chemical compounds in raw ash particles, when combined with the STEM-XEDS results. Despite many reports that CaSO4 is a major ash chemical when ash found in DPF/GFP systems was examined, it was observed to be rarely present in raw ashes using the S K-edge XANES analysis, suggesting ash transformation.


Assuntos
Gasolina , Nanopartículas , Gasolina/análise , Óleos , Tamanho da Partícula , Material Particulado/análise , Emissões de Veículos/análise
16.
IEEE Trans Neural Netw Learn Syst ; 32(10): 4728-4741, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33471770

RESUMO

We present an intensive study on the weight modulation and charge trapping mechanisms of the synaptic transistor based on a pass-transistor concept for the direct voltage output. In this article, the pass-transistor concept for a metal-oxide-semiconductor field-effect transistor is employed to a synaptic transistor with a charge trapping layer, which is named a synaptic pass transistor (SPT). Based on this SPT concept, the voltage signal would be provided at the output terminal directly without requiring a complicated circuitry, whereas the conventional synaptic transistor with the current output needs a conversion circuit. For the SPT, the definition of the synaptic weight as a transfer efficiency and operation principles of the SPT with charge-trapping mechanisms is analyzed theoretically. The respective semiconductor device simulation results, such as synaptic output and weight modulations as a function of time for a synaptic depression and facilitation, are presented with detailed analysis. Also, it is shown that an SPT array configuration can perform a synaptic scaling by itself, i.e., a self-normalization of the weight, which is confirmed with the simulation results of learning a simple classification example. Moreover, to verify the potential usage of the SPT array as an analog artificial intelligence accelerator, a classification task for a standard data set, e.g., Modified National Institute of Standards and Technology database (MNIST), is also tested by monitoring the accuracy. Finally, it is found that SPTs proposed here can exhibit low power consumption at a device level as well as sufficient accuracy at the array level while more closely mimicking the biological synapse.


Assuntos
Inteligência Artificial/tendências , Bases de Dados Factuais/tendências , Redes Neurais de Computação , Sinapses , Potenciais de Ação/fisiologia , Elétrons , Humanos , Sinapses/fisiologia
17.
RSC Adv ; 11(11): 6099-6106, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35423150

RESUMO

The synthesis of fluorine-18 labeled fluoroform with high molar activity has grown in importance for the development of fluorine-18 labeled aryl-CF3 radiopharmaceuticals that are useful as diagnostic radiotracers for the powerful technique of positron emission tomography (PET). We designed a strategy of synthesizing fluorine-18 labeled fluoroform from N1-difluoromethyl-N3-methyltriazolium triflate (1) via SN2 fluorination without stable fluorine isotope scrambling. Fluoroform was generated at rt in 10 min by fluorination of the triazolium precursor with TBAF (6 equiv.). We propose three routes (a), (b), and (c) for this fluorination. Quantum chemical calculations have been carried out to elucidate the mechanism of experimentally observed nucleophilic attack of fluoride at difluoromethyl group via route (a), not N3-methyl via route (b). 1H and 19F NMR studies using deuterium source have been performed to examine the competition between SN2 fluorination (route (a)) and the formation of difluorocarbene (route (c)). The observed superiority of SN2 pathway to formation of difluorocarbene in the reaction of the precursor using CsF in (CD3CN/(CD3)3COD (17.8 : 1)) gives the possibility of preparing the fluorine-18 labeled fluoroform in high molar activity.

18.
Angew Chem Int Ed Engl ; 60(2): 976-982, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-32978880

RESUMO

Shape-selective catalysis plays a key role in chemical synthesis. Porous nanomaterials with uniform pore structures are ideal supports for metal nanoparticles (MNPs) to generate efficient shape-selective catalysis. However, many commercial irregular porous nanomaterials face the challenge to realize satisfactory shape selectivity due to the lack of molecular sieving structures. Herein, we report a concept of creating shape selectivity in MNPs/porous nanomaterials through intentionally poisoning certain MNPs using suitable modifiers. The remaining MNPs within the substrates can cooperate with the channels to generate selectivity. Such a strategy not only applies to regular porous nanomaterials (such as MOFs, zeolites) but also extended to irregular porous nanomaterials (such as active carbon, P25). Potentially, the matching among different MNPs, corresponding modifiers, and porous nanomaterials makes our strategy promising in selective catalytic systems.

19.
ACS Appl Mater Interfaces ; 12(46): 51397-51408, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33141552

RESUMO

Layered NaNixFeyMnzO2 cathode (NFM) is of great interest in sodium ion batteries because of its high theoretical capacity and utilization of abundant, low-cost, environmentally friendly raw materials. Nevertheless, there remains insufficient understanding on the concurrent local environment evolution in each transition metal (TM) that largely influences the reversibility of the cathode materials upon cycling. In this work, we investigate the reversibility of TM ions in layered NFMs with varying Fe contents and potential windows. Utilizing ex situ synchrotron X-ray absorption near-edge spectroscopy and extended X-ray absorption fine structure of precycled samples, the valence and bonding evolution of the TMs are elucidated. It is found that Mn is electrochemically inactive, as indicated by the insignificant change of Mn valence and the Mn-O bonding distance. Fe is electrochemically inactive after the first five cycles. The Ni redox couple contributes most of the charge compensation for NFMs. Ni redox is quite reversible in the cathodes with less Fe content. However, the Ni redox couple shows significant irreversibility with a high Fe content of 0.8. The electrochemical reversibility of the NFM cathode becomes increasingly enhanced with the decrease of either Fe content or with lower upper charge cutoff potential.

20.
Anal Chem ; 92(20): 13961-13970, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32959648

RESUMO

Technetium-99 (Tc), a high yield fission product generated in nuclear reactors, is one of the most difficult contaminants to address at the U.S. Department of Energy Hanford, Savannah River, and other sites. In strongly alkaline solutions typifying Hanford tank waste, Tc exists as pertechnetate (TcO4-) (oxidation state VII) as well as in reduced forms (oxidation state < VII), collectively known as non-pertechnetate (non-TcO4-) species. Designing strategies for effective Tc management, including separation and immobilization, necessitates understanding the molecular structure of the non-TcO4- species and their identification in actual tank waste samples. Identification of non-TcO4- species would facilitate the development of new treatment technologies effective for dissimilar Tc species. Toward this objective, a spectroscopic library of the Tc(I) [fac-Tc(CO)3]+ and Tc(II, IV, V, VII) compounds was generated and applied to the characterization of the actual Hanford AN-102 tank waste supernatant, which was processed to adjust Na concentration to ∼5.6 M and remove 137Cs by spherical resorcinol-formaldehyde (sRF) ion-exchange resin. Post 137Cs removal, the cesium-loaded sRF column was eluted with 0.45 M HNO3. As-received AN-102, Cs-depleted effluent, and sRF eluate fractions were comprehensively characterized for chemical composition and speciation of Tc using 99Tc nuclear magnetic resonance spectroscopy and X-ray absorption spectroscopy. It was demonstrated for the first time that non-TcO4- Tc present in the AN-102 tank waste is composed of several low-valent Tc species, including the Tc(I) [fac-Tc(CO)3]+ and Tc(IV) compounds. This is the first demonstration of multiple non-TcO4- species co-existing in the Hanford tank waste, highlighting their importance for the waste processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...